EN
rabbitjump.430school.net

成色18k.8.35mb菠萝自主agent路线错了!华人学者提出LLM-HAS:从“自主能力”转向“协作智能”

主流观点认为,更高的自主性代表了更好的系统——减少人类介入本身就具有内在价值,而完全的独立性则应成为最终目标。 在这种范式下,AI 不再是孤立运作的“操作员”,而是人类的积极协作伙伴;在增强人类能力的同时,也保留了关键的人类判断与监管职责。 在他们看来,AI 的进步不应以系统独立程度来衡量,而应以它们与人类协作的有效性来评判;AI最值得期待的未来,不在于取代人类角色的系统,而在于通过有意义的合作来提升人类能力的系统。 例如,在软件工程领域,GitHub Copilot 可以自主生成、测试并重构代码,几乎不需要开发者干预,加速了常规开发流程;在客户支持领域,AutoGLM、Manus 和 Genspark 等系统能够在无需人工干预的情况下,完成复杂的行程规划、自动预订以及解决服务问题,在动态环境中展现出优秀的感知-动作循环能力。 LLM 容易生成看似可信但实则虚假的“幻觉”内容。幻觉问题的普遍存在,直接削弱了人们对完全自主系统的信任。如果系统无法持续且可靠地提供准确的信息,它在高风险场景下(如医疗诊断、金融决策或关键基础设施控制)将极为危险。 这类 agent 在需要深度推理的任务中表现不佳,尤其当目标本身含糊不清时更是如此。人类的指令往往并不明确;缺乏常识背景的 LLM 可能会误解任务,进而采取错误行为。因此,在如科学研究等目标开放、动态调整的复杂领域,它们并不可靠。 尽管这类系统具备“行动能力”,但在现有法律体系下,它们并不具备正式的法律责任主体资格。这就导致了责任与透明度之间存在巨大鸿沟:当系统造成伤害或做出错误决策时,很难厘清责任应由谁承担——是开发者、部署者,还是算法本身?随着 agent 能力的增强,这种“能力”与“责任”之间的法律鸿沟只会愈加严重。 LLM-HAS 在运行过程中始终保持人类参与,以提供关键信息和澄清说明,通过评估输出结果并指导调整来提供反馈,并在高风险或敏感场景中接管控制权。这种人类参与,确保了 LLM-HAS 在性能、可靠性、安全性和明确的责任归属方面的提升,尤其是在人类判断仍不可或缺的领域。 LLM-HAS 的交互性特征,使人类能够实时提供反馈、纠正潜在幻觉输出、验证信息,并引导 agent 产生更准确、可靠的结果。这种协同验证机制是建立信任的关键,尤其在高错误代价场景下至关重要。 相较于在面对模糊指令时容易迷失方向的自主 agent,LLM-HAS 借助人类持续的澄清能力而表现出色。人类提供关键的上下文、领域知识,并能逐步细化目标——这是处理复杂任务所不可或缺的能力。当目标表达不明确时,系统可以请求澄清,而不是在错误假设下继续操作。特别适用于目标动态演变的开放式研究或创造性工作。 由于人在决策流程中持续参与,特别是在监督或干预环节,更容易建立明确的责任边界。在这种模式下,通常可以明确指定某个人类操作员或监督者为责任主体,从而在法律与监管上更具可解释性,远比一个完全自主的系统在出错后追责要清晰得多。 研究团队表示,LLM-HAS 的迭代式沟通机制有助于 agent 行为更好地对齐人类意图,从而实现比传统的基于规则或端到端系统更灵活、透明且高效的协作,从而广泛地应用于高度依赖人类输入、情境推理与实时互动的各类场景,涉及具身智能、自动驾驶、软件开发、对话系统以及游戏、金融、医疗等。 尽管 LLM-HAS 展现出广阔的应用前景,但要成功落地,还必须在开发全周期中审慎应对其固有挑战。主要涉及初始设置、人类数据、模型工程、后期部署和评估。 目前关于 LLM-HAS 的大部分研究采用以 agent 为中心的视角,其中人类主要评估 agent 的输出并提供纠正反馈,这种单向交互主导了现有范式,重新塑造这种动态关系存在巨大潜力。 若使 agent 能够主动监控人类表现、识别低效环节并及时提供建议,将使 agent 的智能得到有效利用并减轻人类工作负荷。当 agent 转变为指导性角色,提出替代策略、指出潜在风险并实时强化最佳实践时,人类与 agent 的性能均会提升。研究团队认为,转向更以人为本或更平衡的 LLM-HAS 设计,是实现真正人-agent 协作的关键。 人类在 LLM-HAS 中的反馈在角色、时机和表达方式上差异巨大。由于人类具有主观性,受个性等因素影响,同一系统在不同人手中可能产生完全不同的结果。 另外,很多实验中使用 LLM 模拟“伪人类”反馈。这类模拟数据往往无法真实反映人类行为差异,从而造成性能失真,削弱比较的有效性。 高质量人类数据的获取、处理与使用,是构建对齐良好、协作高效的 LLM-HAS 的基础。人类生成数据能够帮助 agent 获得更细致的理解,提升其协作能力,并确保其行为符合人类的偏好与价值观。 目前主流方法将 LLM 视为静态的预训练工具,导致“未能有效吸收人类洞见”、“缺乏持续学习与知识保持能力”和“缺乏实时优化机制”等问题, 部署后的 LLM-HAS 仍在安全性、鲁棒性和责任归属方面面临挑战。目前业界往往更关注性能指标,然而在人机交互中的可靠性、隐私与安全等问题尚未得到充分研究。确保可靠的人机协作需要持续监控、严格监督以及整合负责任的人工智能实践。 因此,我们迫切需要一套新的评估体系,从(1)任务效果与效率、(2)人机交互质量、(3)信任、透明度与可解释性、(4)伦理对齐与安全性、(5)用户体验与认知负荷,多维度综合量化人类与 agent 在协作中的“贡献”与“成本”,从而真正实现高效、可靠且负责任的人-agent 协作。

成色18k.8.35mb菠萝
成色18k.8.35mb菠萝将「心流AI助手」仅仅看作一个会自动生成报告的工具,着实低估了它及背后所代表的趋势。真正令人印象深刻的,是它如何将一个模糊的需求,通过自主规划、多轮探索、分析整合,最终构建成一个有逻辑、有骨架、有血肉的知识体系的全过程。早在埃贝尔2023年担任莱比锡高层时就已经与巴尔科拉有过直接接触,当时他专程飞往巴黎与巴尔科拉及其家人见面。球员当时效力于里昂,后来在当年夏天转会至巴黎圣日耳曼。如今为拜仁工作的埃贝尔再度瞄准了他,只是交易并不容易。成色18k.8.35mb菠萝xjxjxj18.gov.cn引进像维尔茨这样的即插即用型天才,他将显著加强进攻部门并帮助塑造未来,对于在成功赢得冠军的赛季后来说是利物浦的又一项提升。对于勒沃库森来说,如果附加条款被激活,他们可以说这是德国俱乐部有史以来收到的最高转会费。近日,来自天津的车主雷先生向澎湃公众互动平台“服务湃”(https://tousu.thepaper.cn)反映称,今年4月,他在天津市华奥兴业汽车销售服务有限公司(以下简称“天津华奥兴业4S店”)购车时,销售员以“财务系统故障”为由,诱骗其将定金76195元汇入个人账户。
20251207 🔞 成色18k.8.35mb菠萝搬迁至山东后,珞石逐步构建起本地化产业配套体系。据张雷介绍,公司核心零部件如电机、减速机等仍以采购为主,但非标铸件、钣金、线束等已实现本地化配套。一些苏州的铸件厂将部分产线迁至济宁工厂周边,线束企业甚至将加工环节搬到珞石厂区隔壁,形成了半径较短的供应链圈。产业配套的完善,不仅降低了物流成本,更实现了生产效率提升和产品质量稳定,助力珞石从“单打独斗”迈向“生态协同”的发展格局。WWW.17cao.gov.cn然而,在气候变化日益剧烈的今天,科学家开始重新审视橡树的适应力。研究发现,在近几十年里,许多林木物种开始表现出“适应滞后”的现象,例如,欧洲山毛榉在一些区域的生长速度显著下降[2]。而橡树囿于它们较长的世代时间,它们对气候变化的反应,也非常缓慢。
成色18k.8.35mb菠萝
📸 梁欣记者 李红梅 摄
20251207 ™ 成色18k.8.35mb菠萝尽管纽卡斯尔希望留住波普,但将其作为与伯恩利谈判的一部分可能会使交易更容易达成。波普与纽卡斯尔的合同仅剩一年,因此提前一年进行交易并将其作为交换条件可能有助于加快谈判进程。波普在伯恩利效力期间非常受欢迎,引进一名有英超经验的门将会减轻失去特拉福德的影响。值得注意的是,虽然特拉福德在英冠表现出色,但在英超水平上仍需证明自己,他在2023/24赛季最后10场比赛中被弃用。尽管纽卡斯尔有意留住波普,但考虑到波普的合同即将到期以及与伯恩利的谈判难度,这种交换交易至少在理论上是值得考虑的。WWW.77788.GOV.CN不仅是找不到院长,真正具备人工智能科研背景的老师也非常稀缺。复旦大学计算机科学技术学院教授、博士生导师薛向阳在接受澎湃科技(www.thepaper.cn)采访时直言,现在不管哪所高校,真正研究人工智能的老师并不多。
成色18k.8.35mb菠萝
📸 赖昭生记者 石新文 摄
🔞 关于俄乌冲突,美国总统特朗普批评乌克兰总统泽连斯基并不令人感到奇蜜桃av怪,但他如果公开批评俄国产亚洲  久一区二区罗斯总统普京,就非同寻常了。国产精品 春水WWW.7799.gov.cn
扫一扫在手机打开当前页